Citostáticos

La literatura científica se suele contentar con clasificaciones bastante superficiales de los medicamentos antineoplásicos, que atienden más su origen que el mecanismo básico de acción. Así es tradicional encontrar grupos como derivados vegetales o antibióticos citostáticos (fármacos de origen bacteriano) que difícilmente se mantendrían como clasificación válida en otros grupos terapéuticos.

Hay buenas razones para no preocuparse demasiado en profundizar en la clasificación de antineoplásicos. Por un lado la mayoría de ellos no basan su acción en mecanismos farmacológicos exquisitamente precisos, sino en provocar una alteración catastrófica en el ciclo de división celular y la cuestión sigue siendo cómo conseguir que afecte sólo a células cancerosas y no a las sanas. La selectividad (hacia tejido neoplásico y no hacia el sano, o hacia determinados tipos de neoplasia y no otros) tiene tanto o más que ver con cuestiones de farmacocinética o propiedades de los tejidos que con el mecanismo de acción del medicamento.

Por otro lado, el conocimiento de la cinética celular ha llevado al abandono de la monoterapia como inevitable generadora de poblaciones celulares resistentes y a la adopción de estrategias de politerapia con fármacos de mecanismo de acción sinérgico o complementario.

Esto tiene dos efectos contrapuestos: disminuir la importancia del mecanismo de acción de cada antineoplásico individual y aumentar el interés de la clasificación a efectos de seleccionar la combinación correcta, sin perder de vista que los tratamientos antineoplásicos están altamente protocolizados y el espacio libre para la iniciativa del clínico es relativamente estrecho. Por todo lo dicho, la clasificación utilizada atiende al punto de acción del antineoplásico, y desde dentro de la célula hacia el exterior los dividiremos en:

  1. Antineoplásicos que actúan sobre el ADN.
  2. Los que actúan sobre la mitosis sin afectar al ADN.
  3. Los que son, o actúan sobre, factores extracelulares de división celular.
  4. Los que actúan sobre el sistema inmunitario.

TABLA 1. Panorama general de los antineoplásicos

Activos sobre ADN. Afectan a la integridad de las cadenas de ácidos nucléicos, especialmente el ADN, impidiendo la replicación normal. La acción puede ser específica de fase o más generalmente ocurre en cualquier momento del ciclo celular, pero el efecto suele hacerse patente en el paso de la fase G1 a la S (de síntesis de ADN) en cuyo momento las células con cadenas defectuosas sufren un proceso de apoptosis o “destrucción programada” si el gen p53 (que controla dicho proceso) permanece intacto. A este grupo pertenecen la mayoría de los anticancerosos clásicos. La mielodepresión es una característica común, pero hay algunas excepciones.

AGENTES ALQUILANTES

Mostazas nitrogenadas

Ciclofosfamida, Clorambucilo,  Ifosfamida, Melfalán, Trofosfamida
Nitrosoureas
Carmustina, Estramustina
Fotemustina, Lomustina,  Prednimustina

Etilenoiminas
Altretamina, Tiotepa

Alquilsulfonatos
Busulfan, Treosulfán

Triazenos
Dacarbazina, Procarbazina,  Temozolomida

Forman enlaces químicos estables con las bases púricas y pirimidínicas de los ácidos nucléicos. La mayoría de las moléculas de este extenso y variado subgrupo tienen dos radicales capaces de formar enlace, con lo cual tienen la posibilidad de unirse simultáneamente a las dos cadenas de la doble hélice de ADN, impidiendo la separación previa a la división celular.

COMPLEJOS DE PLATINO
Carboplatino, Cisplatino,  Oxaliplatino

Cronológicamente posteriores a los agentes alquilantes y considerados diferentes de éstos, el mecanismo de acción es muy semejante. Al ser activados intracelularmente quedan libre dos valencias del ión platino, que forman dos enlaces estables con componentes del ADN, usualmente con dos moléculas de guanina adyacentes en la misma cadena, pero también formando puentes entre las cadenas cuando es posible. El resultado es la producción de errores de trascripción y la imposibilidad de que las cadenas se separen para la replicación.

El oxaliplatino está relacionado con el cisplatino y el carboplatino, aunque presenta un ligando mucho más voluminoso que los sus antecesores. Este peculiar ligando parece participar activamente en el mecanismo citotóxico del oxaliplatino, ya que afecta a la formación de los aductos platino-ADN y ello parece traducirse en un bloqueo más eficaz de la replicación del ADN que con cisplatino y carboplatino y, por ende, una mayor citotoxicidad. Además, este ligando impide la resistencia tumoral cruzada entre el oxaliplatino u y otros complejos de platino.

ANTIMETABOLITOS
Análogos de pirimidinas
Capecitabina, Citarabina,  Fluorouracilo, Ftorafur,        Tegafur

Análogos de purinas
Cladribina, Fludarabina,  Pentostatina, Tioguanina

Análogos de ácido fólico
Metotrexato, Raltitrexed

La mayor parte de los medicamentos son análogos de bases púricas y pirimidínicas que se han introducido empíricamente para que interfieran en el proceso de síntomas y duplicación del ADN por su semejanza con los sustratos naturales. Aunque el éxito es innegable, el mecanismo de acción es complejo, distinto según el medicamento, y muchas veces no se conoce con precisión. Suelen estar involucrados, entre otros y concurrentemente, la inhibición de la síntesis de nucleótidos y la incorporación directa de los antimetabolitos al ADN y ARN, dando lugar a cadenas defectuosas que disparan los procesos celulares de reparación o que inhiben la posterior síntesis de la cadena desde el punto de inserción.

El metotrexato se incluye tradicionalmente en este subgrupo pero tiene un mecanismo bastante diferente: interfiere en la síntesis de novo de bases púricas y pirimidínicas -altamente dependiente del ácido fólico- por inhibición del enzima dihidrofolato-reductasa. Esto origina la escasez de materiales básicos para la síntesis de ácidos nucléicos, pero la acción principal probablemente se debe a la acumulación intracelular de derivados tóxicos del ácido fólico. Es además uno de los pocos medicamentos de este grupo que son específicos de fase, y sólo es efectivo en la fase S del ciclo celular.

ANTIBIÓTICOS CITOSTÁTICOS

Antraciclinas
Daunorubicina
Doxorubicina
Epirubicina
Idarubicina
Mitoxantrona
Pirarubicina
Amsacrina
Otros
Bleomicina
Mitomicina

Los medicamentos de este subgrupo sólo tienen en común su origen bacteriano, pero todos actúan a nivel de ADN, por lo que podemos respetar esta clasificación tradicional. Los mecanismos de acción son muy variados. La mitomicina se comporta como un alquilante tras sufrir biotransformación intracelular. La bleomicina provoca el corte de las cadenas de ADN por formación de radicales libres, tras complexar iones ferrosos. Es uno de los anticancerosos menos mielosupresores del grupo. Las antraciclinas también provocan cortes en el ADN por un mecanismo complejo. Por una parte forman radicales libres por reacción con iones ferrosos, como hace la bleomicina. Por otra tienen acción sobre la membrana celular, parte efecto terapéutico y parte causa de la notoria cardiotoxicidad de estos compuestos. Finalmente, se intercalan en el ADN provocando malformaciones y cadenas anómalas que son cortadas por la tropoisomerasa II, un mecanismo parecido al de los alcaloides del podofilo. La amsacrina, que no es propiamente una antraciclina sino un compuesto sintético diseñado tomándolas como modelo, tiene esta última acción de forma predominante.

DERIVADOS DE LA EPIPODOFILOTOXINA

Etopósido
Tenipósido

Los alcaloides del podofilo forman un triple complejo entre su propia molécula, la cadena del ADN y la topoisomerasa II (enzima encargado de corregir los errores del ADN y restaurar la cadena a su configuración espacial adecuada) de tal forma que se produce el corte de la parte anómala causada por la fijación del fármaco pero no la restauración posterior de la cadena original.

CAMPTOTECINAS

Irinotecán

Topotecán

Estos agentes antitumorales han sido desarrollados a partir de la camptotecina, un alcaloide presente en un árbol de origen chino (Camptotheca acuminata) con potentes efectos citotóxicos. Tal actividad es debida a la inhibición de la síntesis de ARN y ADN (específicos de la fase S del ciclo celular). Estos fármacos presentan un amplio espectro de actividad antitumoral, con efectos más marcados sobre carcinomas colorrectales, ováricos, mamarios, pulmonares y renales, incluyendo formas mulitirresistentes a quimioterapia.

Actúan inhibiendo de forma selectiva la topoisomerasa I, el enzima intranuclear implicado en el desenrrollamiento de las hebras de ADN, proceso previo a la replicación y transcripción del ADN. El enzima actúa uniéndose a regiones específicas de la cadena de ADN, rompiendo una de las hebras del ADN. Posteriormente, el enzima vuelve a soldar la cadena tras haberla desenrrollado. Tanto irinotecán como topotecán se unen al complejo ADN-topoisomerasa I y lo estabilizan. Esto permite que el primer paso de la acción enzimática, pero impide el segundo (la reconstrucción de la hebra de ADN). Con ello, queda paralizada la síntesis de nuevas moléculas de ADN. Parece que las células neoplásicas presentan niveles de topoisomerasa I superiores a los de las células normales, lo que implicaría un cierto grado de selectividad citotóxica de estos agentes frente a las células tumorales.

Inhibidores de la mitosis. Son los antineoplásicos que interfieren en el proceso de mitosis sin afectar directamente al ADN. Por lo tanto son específicos de fase con escasa acción en células que no se dividen; los fármacos que retrasan el paso de las células a la fase M pueden antagonizar su efecto. Los medicamentos comercializados de este grupo influyen en los microtúbulos que forman el entramado celular y que tienen, entre otras importantes funciones, la de formar el huso cromático durante la mitosis. La función requiere del mantenimiento de un equilibrio dinámico de polimerización y despolimerización entre el microtúbulo y su constituyente tubulina. Este equilibrio es roto en uno u otro sentido por los antineoplásicos inhibidores de la mitosis.

ALCALOIDES DE LA VINCA
Vinblastina
Vincristina
Vindesina
Vinorelbina

Los alcaloides de la vinca tienen la propiedad de ligarse a la tubulina e impedir la polimerización para formar microtúbulos. La mitosis se detiene en la metafase y los cromosomas se dispersan por el citoplasma o se agrupan de forma anómala.

TAXOIDES
Docetaxel
Paclitaxel

Al contrario de los derivados de la vinca, los del Taxus promueven la formación de microtúbulos al unirse a la b-tubulina. Se forman estructuras microtubulares anómalas o excesivamente estables que no pueden participar en la mitosis.

Factores extracelulares. Clasificamos aquí los fármacos que son factores externos de estímulo o de inhibición de la división celular, y a los que actúan directamente o indirectamente sobre los mismos. Los antineoplásicos hormonales sólo tienen efecto en tejidos cuyo crecimiento depende de estímulo hormonal. En la práctica los incluidos aquí se usan en casi exclusivamente procesos dependientes de hormonas sexuales, sobre todo en mama y próstata. La indicación se basa en que los tejidos conservan, al menos al principio, los receptores para las hormonas y capacidad parcial de respuesta a las mismas. Otros factores hormonales se usan en procesos específicos. Así, los corticoides son inhibidores de la división de los linfocitos y se emplean en leucemias. Los interferones tienen acción directa y bastante compleja sobre muchas células del organismo.

ANTAGONISTAS DE ESTRÓGENOS

Bloqueantes de receptores
Tamoxifeno
Toremifeno
Inhibidores de la aromatasa
Aminoglutetimida
Anastrazol, Exemestano,  Formestano, Letrozol

Agrupamos aquí dos mecanismos de bloquear la acción de los estrógenos: la inhibición de la producción (la aromatasa es un enzima clave en la trasformación de andrógenos en estrógenos) y el bloqueo de receptores estrogénicos. Este último sistema ha demostrado ser bastante eficaz y es el que produce menos efectos secundarios. Se incluye en la mayoría de los regímenes de tratamiento.

Un tercer mecanismo farmacológico es la inhibición de la secreción natural de estrógenos haciendo uso de progestágenos o de agonistas de LH-RH, que serán tratados posteriormente.

ANTAGONISTAS DE ANDRÓGENOS
Estrógenos
Fosfestrol
Ver también grupo G03C
Bloqueantes de receptores
Flutamida
Bicalutamida

Los estrógenos reducen los niveles de LH y en consecuencia la producción de testosterona, pero son menos eficaces en esto que los agonistas de LF-RH que se describen después, y están sujetos a efectos adversos en la aplicación crónica. El fosfestrol se incluye aquí porque su única indicación es la de antineoplásico, pero se usan también otros estrógenos incluidos en el grupo G03C. A los bloqueantes de testosterona no hormonales que figuran en la tabla hay que añadir la ciproterona (ver grupo G03HA) y otros de naturaleza hormonal.

PROGESTÁGENOS
Gestonorona caproato
Medroxiprogesterona
Megestrol

En la mujer los progestágenos tienen acción antiestrogénica por dos mecanismos: inhiben a nivel hipotalámico-hipofisario la secreción de estrógenos y contrarrestan a nivel celular el estímulo proliferativo de los estrógenos. En el hombre la acción inhibidora de la testosterona es debida básicamente al primero de los mecanismos citados.

ANALOGOS DE LHRH
Buserelina
Goserelina
Leuprorelina
Triptorelina

Los análogos de LH-RH producen en una primera fase un aumento de la secreción de gonadotropinas, pero el tratamiento continuado induce un estado refractario al posterior estímulo que se traduce en un descenso muy pronunciado de los niveles de FSH y LH y como consecuencia de la producción de testosterona en el hombre y de estrógenos en la mujer. Son ahora los fármacos preferidos para este propósito y sus aplicaciones rebasan el campo oncológico.

INTERFERONES
Ver grupo L03AB

Los interferones reaccionan con la membrana celular para producir acciones en el núcleo. Estas acciones son extremadamente complejas y básicamente consisten en inducir la expresión de determinados genes y la represión de otros. Se explican con más detalle, incluyendo las aplicaciones como anticancerosos, en la introducción al grupo L03AB.

Potenciadores de defensas inmunitarias. Las vacunas contra el cáncer son un viejo sueño sin realizar. La mayoría de los medicamentos de este grupo son simplemente potenciadores de las defensas del organismo que pueden reconocer y eliminar las células cancerosas. Los anticuerpos monoclonales constituyen quizá la forma más evolucionada de este tipo de tratamiento.

Factor de Necrosis Tumoral (TNF)

La tasonermina es la forma recombinante del TNF alfa. Aunque existían muchas expectativas acerca del potencial antineoplásico de esta citocina, su extraordinaria toxicidad impide, hasta el momento, su empleo sistémico. No obstante, su aplicación local, en forma de infusión arterial regional con hipertermia moderada,  en asociación al melfalán, ha demostrado ser una forma relativamente eficaz como coadyuvante en la cirugía para la extirpación posterior del tumor, con el fin de evitar o retrasar la amputación o como medida paliativa, en caso de sarcoma de tejidos blandos inextirpable de las extremidades.

Interleucinas
Aldesleukina

La aldesleukina o interleucina 2 es un estimulante de los linfocitos T. Induce una respuesta citolítica a las células tumorales, mediada por linfocitos T.

Anticuerpos monoclonales

Alemtuzumab

Rituximab

Trastuzumab

Rituximab es un anticuerpo monoclonal específico para los receptores de superficie CD20 de los linfocitos B humanos. Está indicado en el tratamiento de linfomas no hodgkinianos de células B de bajo grado que hayan recaído o sean refractarios a otros tratamientos. Los receptores CD20 están presentes en el 90% de los linfomas no hodgkinianos de linfocitos B, y actúan como receptores moleculares del antígeno Bp35, una proteína fosforilada responsable de la restricción de la diferenciación de los linfocitos B que es expresada durante las fases más precoces. Rituximab produce la lisis de las células tumorales en presencia del complemento humano.

Trastuzumab es un anticuerpo monoclonal que se une de forma selectiva con una alta afinidad al dominio extracelular de la proteína del receptor del factor de crecimiento epidérmico humano HER2, sobreexpresada en diversos tipos de células tumorales, especialmente mama y ovario.

El alemtuzumab es un anticuerpo monoclonal humanizado IgG1k que es capaz de reconocer el antígeno humano CD52, una glucoproteína de membrana expresada prácticamente en el 100% de los casos leucemia linfocítica crónica, así como en la mayoría de los casos de linfomas no hodgkinianos. Este marcado biológico se encuentra presente en más del 95% de todos los linfocitos (B y T) y monocitos, tanto normales como malignos, presentes en sangre periférica.

Vacuna BCG

La tradicional vacuna contra la tuberculosis ha tenido muchos altibajos en la aplicación de inducir defensas que reconozcan las células tumorales. Ha encontrado por fin un hueco en el tratamiento del carcinoma in situ de vejiga, aplicada por instilación intravesical.

Otros medicamentos antineoplásicos.
Imatinib

El imatinib se utiliza en tratamiento de pacientes adultos con leucemia mieloide crónica (LMC), cromosoma Filadelfia positivo (bcr-abl), en fase crónica tras el fallo del tratamiento con interferón alfa, en fase acelerada o crisis blástica. Es un inhibidor potente y selectivo de las tisorina cinasas codificadas por el gen abl, incluyendo también las derivadas del bcr/abl (presente en el cromosoma Filadelfia). La principal consecuencia de ello es la inhibición selectiva de la proliferación y la inducción de la apoptosis de las células Ph1-positivas. Imatinib es también un potente inhibidor del receptor tirosina cinasa para el factor de crecimiento derivado de las plaquetas (FCDP) y del factor de células troncales (FCT).

El contenido aquí mostrado corresponde a BOT (base de datos de medicamentos en España 2002), que aunque está relacionado con medicamentos de uso humano, puede resultar muy útil para la medicina veterinaria de pequeños animales.



Realiza las consultas que desees sobre este tema a nuestros veterinarios, gratuitamente, en el Club de tu mascota.

Para consultas entre veterinarios visita tu Comunidad.

Si eres estudiante de veterinaria visita tu Club.

Acerca de Maria del Mar Griñán Pastor

- - - - - - - - - - para saber más sobre mí entra en mariadelmar.vetjg.es
Esta entrada fue publicada en farmacología, oncología. Guarda el enlace permanente.

¿Quieres recibir más artículos como este por email?

Introduce tu email:

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *